Mixed atomistic/continuum modeling of domain wall structure and kinetics

K. Bhattacharya, J. Knap, O. Kowalewsky, M. Ortiz, A. Yavari

Caltech

Engineering Microstructural Complexity in Ferroelectric Devices
Review I, October 9, 2002
Multi-scale modeling of domains

- Homogenization
- Relaxation
- Renormalization
- Quasicontinuum
- Molecular Dynamics
- Quantum Mechanics

Scale ranges:
- 10^{-2} m
- 10^{-6} m
- 10^{-7} - 10^{-4} m
- 10^{-8} - 10^{-6} m
- 10^{-10} - 10^{-8} m
- 10^{-8} m
Objectives

- Consideration of both atomistic and continuum (long range) effects is required for understanding:
 - *The structure, kinetics and stability of extended structures such as domain-wall steps, kinks…*
 - *Long-range Interaction between domain walls and lattice defects such as vacancies, crack tips…*

- Basic strategy: Start from a full atomistic description of the material and:
 - *Simplify field equations by recourse to the harmonic approximation, lattice statics*
 - *Quasicontinuum method: Retain full atomistic resolution where needed, coarsen description elsewhere*
Domain-wall structure: Harmonic analysis

- **Objective:** Ascertain analytically
 - *The structure of isolated domain walls, domain-wall steps in infinite bodies (no finite-cell, periodicity, effects)*
 - *The long-range elastic interactions between domain walls and (distant) lattice defects*
 - *Energy barriers to domain-wall, step, mobility, under the action of macroscopic driving forces*

- **Approach:**
 - *Start from an atomistic description of the material based on empirical potentials (e.g., polarizable reactive force field, Goddard et al)*
 - *Linearize field equations about reference configuration (harmonic approximation)*
 - *Solve the resulting field equations analytically by means of DFT, Green’s functions, Wiener-Hopf technique*
Domain-wall structure: Harmonic analysis

- Model energy:

$$E(y, P) = \frac{1}{2} \sum_{j \neq i} \phi(|y^i - y^j|) + \sum_i \psi(P^i) + \sum_{j \neq i} \left\{ \frac{P^i \cdot P^j}{|y^i - y^j|^3} - \frac{3P^i \cdot (y^i - y^j) P^j \cdot (y^i - y^j)}{|y^i - y^j|^5} \right\}$$

- Pair potential:

$$\phi_I(r) = K_I(r - a)^2(r - b)^2$$
$$\phi_{II}(r) = K_{II}(r - \sqrt{a^2 + b^2})^2$$

- Anisotropy energy:

$$\psi(P) = A(P - P_1) \cdot (P - P_1)(P - P_2) \cdot (P - P_2)$$
Domain-wall structure: Harmonic analysis

- Linearized problem: $y = y_0 + u$, $P = P_0 + v$

$$\partial_y \partial_y E(y_0, P_0) \cdot u + \partial_y \partial_P E(y_0, P_0) \cdot v = -\partial_y E(y_0, P_0)$$

$$\partial_P \partial_y E(y_0, P_0) \cdot u + \partial_P \partial_P E(y_0, P_0) \cdot v = -\partial_P E(y_0, P_0)$$

Reference configurations for 180 and 90-degree walls
Domain-wall structure: Harmonic analysis

Relaxed configurations for 180 and 90-degree walls
Domain-wall structure: Harmonic analysis

Relaxed 90-degree wall
Domain-wall structure: Harmonic analysis

Relaxed 90-degree wall

\[u_{n+1} - u_n \]
Domain-wall structure: Harmonic analysis

Relaxed 90-degree wall
Domain-wall structure: Harmonic analysis

Relaxed 180-degree wall
Harmonic analysis – Work in progress

- Verification of harmonic approximation…
- Modulation of the solution parallel to wall…
- Extensions to complex lattices, charge redistribution…
- Using polarizable reactive force-field potential (Goddard et al)…
- Analysis of domain-wall steps…
- Macroscopic driving forces, energy barriers…
Extended structures: Quasicontinuum analysis

- Need atomistic realism and accounting of long-range interactions simultaneously: mixed atomistic/continuum modeling
Extended structures: Quasicontinuum analysis

- **Objective:** Ascertain
 - Structure of extended domain-wall defects, structures
 - Short and long-range wall-obstacle interactions
 - Energy barriers due to pinning, wall mobility

- **Approach:** Quasicontinuum
 - Start from a full atomistic description of the material
 - Retain full atomistic resolution where needed, coarsen description elsewhere

- **Extensions with respect to previous work**
 - Complex lattices
 - Charge redistribution
 - Finite temperature (e.g., Langevin dynamics)
Extended structures: Quasicontinuum analysis

- **Kinematics:**
 \[q_h(l) = \sum_{l_h \in \mathcal{L}_h} \phi_h(l|l_h)q_h(l_h) \]

- **Constrained minimization:**
 \[\min_{q_h \in X_h} E(q_h) \]

- **Cluster summation rules:**
 \[E(q_h) \approx \sum_{l_h \in \mathcal{L}_h} n_h(l_h) \left(\sum_{l \in C(l_h)} E(l|q_h) \right) \]
Quasicontinuum analysis: Complex lattices
Quasicontinuum analysis: Complex lattices

- Kinematics:

\[q_h^A(l) = \sum_{l_h \in \mathcal{L}_h^A} \phi_h^A(l|l_h) q_h^A(l_h) \]

\[q_h^B(l) = \sum_{l_h \in \mathcal{L}_h^B} \phi_h^B(l|l_h) q_h^B(l_h) \]

- Constrained minimization:

\[\min_{(q_h^A, q_h^B) \in X_h} E(q_h^A, q_h^B) \]

- Cluster summation rules:

\[E(q_h^A, q_h^B) \approx \sum_{l_h \in \mathcal{L}_h^A \cup \mathcal{L}_h^B} n_h(l_h) \left(\sum_{l \in \mathcal{C}(l_h)} E(l|q_h^A, q_h^B) \right) \]
Quasicontinuum analysis – Charges

• Polarizable reactive force field potential (Goddard et al):
 – Charges distributed over atoms (Gaussians)
 – Includes shielding when charges overlap
 – Shell can move wrt core, atomic polarizability
 – Allows for charge transfer (shell charges)
 – Self-consistent charge equilibration

\[
\rho_i^{\text{core}}(\vec{r}) = \left(\frac{\eta_i^c}{\pi} \right)^{3/2} Q_i^c \exp\left(-\eta_i^c \cdot |\vec{r} - \vec{r}_i^c|^2 \right)
\]

\[
\rho_i^{\text{shell}}(\vec{r}) = \left(\frac{\eta_i^s}{\pi} \right)^{3/2} Q_i^s \exp\left(-\eta_i^s \cdot |\vec{r} - \vec{r}_i^s|^2 \right)
\]
Quasicontinuum analysis – Charges

- Charge interpolation:
 \[Q_h^A(l) = \sum_{l_h \in \mathcal{L}_h^A} \phi_h^A(l|l_h)Q_h^A(l_h) \]
 \[Q_h^B(l) = \sum_{l_h \in \mathcal{L}_h^B} \phi_h^B(l|l_h)Q_h^B(l_h) \]

- Constrained minimization:
 \[\min_{\{(q_h^A, Q_h^A), (q_h^B, Q_h^B)\} \in X_h} E((q_h^A, Q_h^A), (q_h^B, Q_h^B)) \]

Quasicontinuum analysis – Work in progress

- C++ implementation of complex lattice capability done
- Verification tests in progress…
- Implementation of charge redistribution capability in progress…
- Applications:
Extended structures: Quasicontinuum analysis

R. Zhang and G. Ravichandran

• Need atomistic realism and accounting of long-range interactions simultaneously: mixed atomistic/continuum modeling